Lemma 1 ( Bubeck ) Beta-Smoothness
Let $f$ be a $\beta$-smooth function. then for any $x,y$
$$| f(x) - f(y) - \nabla f(y)^T (x-y) | \leq \frac{\beta}{2} ||x-y||^2$$
Proof )
\begin{align} | f(x) - f(y) - \nabla f(y)^T (x-y) | &= |\int^1_0 \nabla f(y+t(x-y))^T(x-y) dt - \nabla f(y)^T (x-y) | \\ &\leq | \int^1_0 ||\nabla f(y+t(x-y)) - \nabla f(y)^T|| ||(x-y)| |\\ &\leq \int^1_0 \beta t ||x-y||^2 \\ &= \frac{\beta}{2} ||x-y||^2\end{align}
'Math > Optimization' 카테고리의 다른 글
Knapsack problem (0) | 2025.04.05 |
---|---|
Hermite Form (0) | 2025.04.05 |
Oracle Complexity (0) | 2021.12.17 |
Proximal Gradient and Mirror Descent (0) | 2021.10.20 |
Duality (0) | 2021.10.17 |