Projection
$P=A(A^TA)^{-1}A^T$
- extreme cases
- If $b$ is in columns space , $Pb=b$
- $b$ is column combination of $A$
- $b=Ax$ ⇒ $Pb= A(A^TA)^{-1}A^TAx=Ax=b$
- If $bㅗ$columns space, $Pb=0$
- $b$ is in left null space ⇒ $A^Tb=0$
- If $b$ is in columns space , $Pb=b$
Projection onto left null space
$I-P$ is projection matrix onto left null space
Find the best straight line
line : $b=C+Dt$
data points : (1,1), (2,1) ,(3,1)
$C+D=1$
$C+2D=2$
$C+3D=2$
$Ax=b$
$\begin{bmatrix}1&& 1\\ 1&&2\\1&&3 \end{bmatrix}\begin{bmatrix}C\\D \end{bmatrix}=\begin{bmatrix}1\\2\\2 \end{bmatrix}$
No solutions exist,so minimize $||Ax-b||^2=||e||^2$
-
Take Partial Derivative
$||C+D-1||^2+||C+2D-2||^2+||C+3D-2||^2$
-
Use Projection Matrix
$A^TA\hat{x}=A^Tb$
⇒ Both yields same equation
$3C+6D=5$
$6C+14D=11$
- Verifying $p$ and $e$ are perpendicular
$A^TA$ is always invertible?
If $A$ has independent columns, then $A^TA$ is invertible.
Proof ) Suppose $A^TAx=0$
$x$ must be zero if $A^TA$ is invertible.
-
Trick $x^TA^TAx=0=(Ax)^T(Ax)$ ⇒ $Ax=0$ ⇒ $x=0$
-
Columns are definitely independent if they are perpendicular unit vectors(orthonomal vectors).
'Math > Linear Algebra' 카테고리의 다른 글
Determinant (0) | 2021.02.12 |
---|---|
Orthonormal basis (0) | 2021.02.10 |
Projections onto subspace (0) | 2021.02.02 |
Orthogonal Vectors and Subspaces (0) | 2021.02.01 |
Vector Space와 Subspace (0) | 2021.01.16 |