vector $x$ and vector $y$ are orthogonal
$x^Ty=0$
$||x||^2+||y||^2=||x+y||^2$
$x^Tx+y^Ty=(x+y)^T(x+y)=x^Tx+y^Ty+y^Tx+x^Ty=x^Tx+y^Ty+2x^Ty$
$x^Ty=0$
zero vector
- orthogonal to any other vector
subspace $S$ is orthogonal to subspace $T$
- means every vector in $S$ is orthogonal to every vector in $T$
- Example : (Not orthogonal)
- Two Perpendicular plane in 3 dimensional space
- row space is orthogonal to null space
- Example : 3 dimension space
- line and a plane ⇒ row space and a null space
- line as row space and line as null space (X)
- $A=\begin{bmatrix}1&& 2&& 5\\2&&4&&10\end{bmatrix}$
- row space is a line
- null space is a plane
null space and row space are orthogonal complement in $R^n$
- null space contains all vectors that are perpendicular to row space
Solve $Ax=b$ when there is no solution
- noise in $b$ ⇒ separate noise and information from $b$
- How to solve it
- Throw away equations $m>n$
- Use $A^TA$
- Square Matrix
- Symmetric
- When is it invertible?
- $A=\begin{bmatrix}1&& 1\\ 1&&2\\2&&5 \end{bmatrix}$
- $Ax=b$ is solvable when only $b$ is in the column space
- $A=\begin{bmatrix}1&& 3\\ 1&&3\\1&&3 \end{bmatrix}$
- $A^TA$ is not invertible
- $rank(AB)\leq rank(B)$
- $rank(A)=1,rank(A^T)=1$
- $A^TA$ is not invertible
- $A=\begin{bmatrix}1&& 1\\ 1&&2\\2&&5 \end{bmatrix}$
- $A^TA$ is invertible only when $A$ has independent columns
'Math > Linear Algebra' 카테고리의 다른 글
Least Squares and Straight Line (0) | 2021.02.03 |
---|---|
Projections onto subspace (0) | 2021.02.02 |
Vector Space와 Subspace (0) | 2021.01.16 |
Row Equivalence (0) | 2021.01.08 |
Basis (0) | 2021.01.06 |