본문 바로가기

Math/Linear Algebra

Orthogonal Vectors and Subspaces

vector $x$ and vector $y$ are orthogonal

$x^Ty=0$

$||x||^2+||y||^2=||x+y||^2$

$x^Tx+y^Ty=(x+y)^T(x+y)=x^Tx+y^Ty+y^Tx+x^Ty=x^Tx+y^Ty+2x^Ty$

$x^Ty=0$

zero vector

  • orthogonal to any other vector

subspace $S$ is orthogonal to subspace $T$

  • means every vector in $S$ is orthogonal to every vector in $T$
  • Example : (Not orthogonal)
    • Two Perpendicular plane in 3 dimensional space
  • row space is orthogonal to null space
  • Example : 3 dimension space
    • line and a plane ⇒ row space and a null space
    • line as row space and line as null space (X)
    • $A=\begin{bmatrix}1&& 2&& 5\\2&&4&&10\end{bmatrix}$
      • row space is a line
      • null space is a plane

         

        null space and row space are orthogonal complement in $R^n$

        • null space contains all vectors that are perpendicular to row space

 

 

 

  •  

Solve $Ax=b$ when there is no solution

  • noise in $b$ ⇒ separate noise and information from $b$
  • How to solve it
    1. Throw away equations $m>n$
    2. Use $A^TA$
      • Square Matrix
      • Symmetric
      • When is it invertible?
        • $A=\begin{bmatrix}1&& 1\\ 1&&2\\2&&5 \end{bmatrix}$
          • $Ax=b$ is solvable when only $b$ is in the column space
        • $A=\begin{bmatrix}1&& 3\\ 1&&3\\1&&3 \end{bmatrix}$
          • $A^TA$ is not invertible
            • $rank(AB)\leq rank(B)$
            • $rank(A)=1,rank(A^T)=1$
      • $A^TA$ is invertible only when $A$ has independent columns

'Math > Linear Algebra' 카테고리의 다른 글

Least Squares and Straight Line  (0) 2021.02.03
Projections onto subspace  (0) 2021.02.02
Vector Space와 Subspace  (0) 2021.01.16
Row Equivalence  (0) 2021.01.08
Basis  (0) 2021.01.06