이번에는 Convergence의 종류에 대해 알아보겠다. 아주 헷갈리기 때문에 조심해야한다!
$f_n$ converges in measure :
$$\mu( \{ x | f_n(x)-f(x)| > \epsilon \} ) \to 0.$$
$f_n$ converges in $L^p$ :
$$\int |f_n-f|^p d\mu \to 0.$$
Proposition 10.2 in [Bass] (1) Suppose $\mu$ is a finite measure. If $f_n\to f$ a.e, then $f_n$ converges to $f$ in measure.
(2) If $\mu$ is a measure, not necessarily finite, and $f_n \to f$ in measure, there is a subsequence $n_j$ such that $f_{n_j}\to f$ a.e.
Proof
$\mu( \lim \{ x \mid | f_n(x)-f(x)| \epsilon \} ) \to 0$. Let $\int \chi_{ \{ x \mid | f_n(x)-f(x)|> \epsilon \} }$. Dominated convergence theorem에 의해 convergence in measure를 얻을 수 있다. 여기서 dominated convergence를 적용할 수 있는 이유는 $\mu$가 finite measure이기 때문이다.
이제 (2)를 증명하겠다. $n_j>n_{j-1}$에 대해
$$\mu(\{ x: f_{n_j}(x)-f(x)| > 1/j \}) \leq 1/2^j.$$
$A_j:=\{ x \mid | f_{n_j}(x)-f(x)|>1/j\}$ d이고
$$A = \cap^{\infty}_{k=1} \cup^{\infty}_{j=k}A_j$$
Example 10.7 $f_n\to f$ in measure and $L^p$ but. not almost everywhere :
Let $f_n(x) = \chi_{F_n} (x)$ where $F_n = \{ e^{i\theta} \mid \sum^n_{j=1} 1/j \leq \theta \leq \sum^{n+1}_{j=1}1/n\}$.
Theorem 10.8 in Bass) Suppose $\mu$ is finite measure, and $f_n\to f$ a.e. Then, there exist a measurable set $A$ such that $\mu (A) < \epsilon$ and $f_n\to f$ uniformly on $A^c$.
Proof
$$A_{nk} = \cup^{\infty}_{m=n} \{ x: | f_m-f | > 1/k \}. $$
$\cap_n A_{nk}$ has measure zero since $f_n\to f$ a.e. We can find an integer $n_k$ such that $ \mu(A_{n_kk} )< \epsilon 2^{-k}$. 따라서 $A=\cup^{\infty}_{k=1} A_{n_k k} $의 measurer가 0이라는 것을 보일 수 있다.
Theorem 2.30 in Folland) $f_n$이 Cauchy in measure이면 $f_n\to f$ in measure이다.
Proof) $E_j = \{ x: | g_j -g_{j+1}| \geq 2^{-j} \}$이고 $\mu(E_j)\leq 2^{-j}$인 subsequence를 정의할 수 있다. 즉, $F_k = \cup^{\infty}_{j\geq k} E_j $라고 하면, $g_j$는 $F_k^c$에서 Cauchy이다.
'Math > Measure Theory' 카테고리의 다른 글
Lebesgue integral (0) | 2023.10.16 |
---|---|
Measure and measurable functions (0) | 2023.10.16 |
Hausdorff measure (0) | 2022.06.15 |
Hilbert space : Orthonormality and Closed subspace (0) | 2022.06.15 |
Hilbert Space (0) | 2022.06.15 |