본문 바로가기

Math/Measure Theory

$L^1$ integrable functions

Stein의 measure theory 중 일부를 정리한 내용입니다.

우선 integrable function $f$에 대한 $L^1$ norm을 다음과 같이 정의합니다.

$$ ||f|| = ||f||_{L^1} = ||f||_{L^1} = \int |f(x)| dx$$

$L^1$ space에 있는 $f$에 대해서는 다음과 같은 좋은 성질을 정의할 수 있습니다.

Corollary 2.3 If $ \{ f_n \} $ converges in $L^1$ , then there exists a subsequence $ \{ f_{n_k} \}$ such that

$$ f_{n_k} \to f \quad \text{a.e.} \; x$$

$L^1$에서 dense 한 function들은 다음과 같다

Theorem 2.4 

(i) Simple functions

(ii) Step functions

(iii) Continuous functions of compact support

Proof

$f$를 Increasing Simple function으로 Approximate할 수 있으므로, MCT에 의해 증명이 된다.

Characteristic function을 Step Function으로 Approximate 할 수 있다. 즉, $ || \chi_E - \psi ||_{L^1} < 2\epsilon$ 이다.

 

Translations and continuity

Proposition 2.5. Suppose $ f\in L^1 (\mathbb{R}^d)$. Then

$$ ||f_h - f||_{L^1} \to 0 \quad \text{as} \quad h \to 0$$

Proof

$f$를 continuous function of compact support로 approximation하면된다.

$$ f_h -f = g_h -g + f_h - g_h + g -f $$


Theorem 3.1 Suppose $f(x,y)$ is integrable on $\mathbb{R}^{d1} \times \mathbb{R}^{d2} $. Then for a.e. $y$,

(i) The slice $f^y$ is integrable on $\mathbb{R}^{d1}$ .

(ii) The function defined by $ \int_{\mathbb{R}^{d1}} f^y (x) dx$ is integrable on $\mathbb{R}^{d2}$.

(iii) $\int_{ \mathbb{R}^{d2} } \int_{\mathbb{R}^{d1}} f(x,y) dx dy = \int_{\mathbb{R}^{d1}} f $

Theorem 3.2 Suppose $ f(x,y)$ is non-negative measurable function on $ \mathbb{R}^{d1} \times \mathbb{R}^{d2}$. Then for a.e. $y \in \mathbb{R}^{d2}$,

(i) The slice $f^y$ is measurable on $\mathbb{R}^{d1}$.

(ii) The function defined by $ \int_{\mathbb{R}^{d1}} f^y(x) dx $ is measurable on $\mathbb{R}^{d2}$.

(iii) $\int_{ \mathbb{R}^{d2} } \int_{\mathbb{R}^{d1}} f(x,y) dx dy = \int_{\mathbb{R}^{d1}} f $

Proposition 3.6

Suppose $E_1$ and $E_2$ are measurable subsets of $\mathbb{R}^{d1}$, and $\mathbb{R}^{d2}$. Then $E = E_1 \times E_2 $ is a measurrable subset of $\mathbb{R}^d$. Moreover,

$$ m(E) = m(E_1) m(E_2)$$

Proof

$E$가 measurable하다는 것을 보이면 됩니다.

각 $E_j$를 포함하는 $G_{\delta}$인 $G_j$, $ m_* (G_j -E_j) $가 존재합니다. 

따라서 $ (G_1 \times G_2) - (E_1 \times E_2)  \subset ((G_1 -E_1 ) \times G_2) \cup (G_1 \times (G_2 -E_2)) $ .

'Math > Measure Theory' 카테고리의 다른 글

Linear transformations  (0) 2022.05.08
Functions of bounded variation  (0) 2022.04.20
Good kernels and approximations to the identity  (0) 2022.04.19
Integration Theory  (0) 2022.04.19
Measurable functions  (0) 2022.04.19