본문 바로가기

Math/Analysis

Metric Space

A set $X$ is said to be a metric space if and only if there exists $d$:$X \times X \rightarrow \mathbb{R}$ such that

$d(p,p)=0$

$d(p,q)=d(q,p) $

$d(p,q)+d(q,s) \geqq d(p,s)$

$d(p,q)>0 \qquad if \quad p \neq q $

'Math > Analysis' 카테고리의 다른 글

Weak Convergence  (0) 2021.10.17
Riemann-Stieljes Integral  (0) 2019.11.15
Intermediate Value Property  (0) 2019.10.01
Bounded  (0) 2019.09.27
Local Maximum, Minimum  (0) 2019.09.24