A set $X$ is said to be a metric space if and only if there exists $d$:$X \times X \rightarrow \mathbb{R}$ such that
$d(p,p)=0$
$d(p,q)=d(q,p) $
$d(p,q)+d(q,s) \geqq d(p,s)$
$d(p,q)>0 \qquad if \quad p \neq q $
'Math > Analysis' 카테고리의 다른 글
Weak Convergence (0) | 2021.10.17 |
---|---|
Riemann-Stieljes Integral (0) | 2019.11.15 |
Intermediate Value Property (0) | 2019.10.01 |
Bounded (0) | 2019.09.27 |
Local Maximum, Minimum (0) | 2019.09.24 |